Tecnologia em Metalurgia, Materiais e Mineração
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original


Gabriela Ferrante Rijo de Oliveira, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório

Downloads: 0
Views: 53


ract The recovery of nickel from laterite ores has been increasing during the years. From the limonite layers of laterite ores, HPAL process is used to recover nickel and also cobalt. After the leaching step using sulfuric acid, a separation step is required. Ion exchange technique is commonly used, mainly solvent extraction. Cyanex 272 is usually used as an organic extract to separate cobalt from nickel-rich solution. Despite that, the use of more than one organic extract can increase the metals separation and it is not explored. The goal of this work was to study the synergism of Cyanex 272 and Ionquest 290 to separate cobalt from nickel-rich solution. Experiments were performed at pH 5.2 and 65°C. Results showed that cobalt separation was maximum using 80% of Ionquest 290 and 20% of Cyanex 272 (99.3%). Nickel losses were minimum using 60% of Ionquest 290-4.6%. Manganese, copper, zinc and calcium were all extracted in all experiments.


Solvent extraction; Nickel laterite; Hydrometallurgy; Synergism.


1 Mudd GM. Nickel sulfide versus laterite: the hard sustainability challenge remains. In: Canadian Metallurgical Society. Proceedings of the 48th Conference of Metallurgists; 2009; Sudbury, ON. USA: Canadian Metallurgical Society; 2009. p. 1–10.

2 Mudd GM. Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geology Reviews. 2010;38:9-26. http://dx.doi.org/10.1016/j.oregeorev.2010.05.003.

3 Botelho Junior AB, Dreisinger DB, Espinosa DCR. A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mining, Metallurgy & Exploration. 2018;36:199-213. http://dx.doi.org/10.1007/s42461-018-0016-8.

4 Oxley A, Barcza N. Hydro-pyro integration in the processing of nickel laterites. Minerals Engineering. 2013;54:2-13. http://dx.doi.org/10.1016/j.mineng.2013.02.012.

5 Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Extractive metallurgy of nickel, cobalt and platinum-group metals. Oxford: Elsevier; 2011.

6 Jiménez Correa MM, Aliprandini P, Tenório JAS, Espinosa DCR. Precipitation of metals from liquor obtained in nickel mining. In: Kirchain RE, Blanpain B, Meskers C, Olivetti E, Apelian D, Howarter J, et al. editors. REWAS 2016. Vol. 1, Cham: Springer International Publishing; 2016, p. 333-338. http://dx.doi.org/10.1007/978-3-319-48768-7_52.

7 Anes IA, Botelho Junior AB, Rosario C, Espinosa D, Tenório J. Selective recovery of copper from nickel laterite leach solution. In: Proceedings of the International Seminar on Process Hydrometallurgy; 2018; Santiago. Santiago: GECAMIN; 2018. p. 1-8.

8 Botelho Junior AB, Anes IA, Carvalho MA, Espinosa DCR, Tenório JAS. Recovery of Copper from nickel laterite leach waste by chemical reduction using sodium dithionite. Arizona: The Minerals, Metals & Materials Society; 2018. p. 429-434. http://dx.doi.org/10.1007/978-3-319-72362-4_38.

9 Todd DB. Solvent extraction. In: Vogel HC, Todaro CM, editors. Fermentation and biochemical engineering handbook. 3rd ed. USA: Elsevier Inc.; 2014. p. 225-238. http://dx.doi.org/10.1016/B978-1-4557-2553-3.00012-X.

10 Kislik VS. Final remarks on the competitive complexation/solvation theory of solvent extraction and its application. In: Kislik VS. Solvent extraction: classical and novel approaches. USA: Elsevier; 2012. p. 433-436. http://dx.doi.org/10.1016/B978-0-444-53778-2.10011-1.

11 Sole KC. Solvent extraction in the hydrometallurgical processing and purification of metals - process design and selected applications. In: Aguilar M, Cortina JL. Solvent extration and liquid membranes. USA: CRC Press; 2008. p. 63.

12 Kislik VS. Solvent extraction: classical and novel approaches. USA: Elsevier; 2014. http://dx.doi.org/10.1007/s13398-014-0173-7.2.

13 Mubarok MZ, Hanif LI. Cobalt and nickel separation in nitric acid solution by solvent extraction using Cyanex 272 and Versatic 10. Procedia Chemistry. 2016;19:743-750. http://dx.doi.org/10.1016/j.proche.2016.03.079.

14 Guimarães AS, Mansur MB. Selection of a synergistic solvent extraction system to remove calcium and magnesium from concentrated nickel sulfate solutions. Hydrometallurgy. 2018;175:250-256. http://dx.doi.org/10.1016/j.hydromet.2017.12.001.

15 Shi Q, Zhang Y, Huang J, Liu T, Liu H, Wang L. Synergistic solvent extraction of vanadium from leaching solution of stone coal using D2EHPA and PC88A. Separation and Purification Technology. 2017;181:1-7. http://dx.doi.org/10.1016/j.seppur.2017.03.010.

16 Zagorodni AAA. Ion exchnange materials: properties and application. Vol. 33. Stockholm: Elsevier; 2012. http://dx.doi.org/10.1007/s13398-014-0173-7.2.

17 Inamuddin ML. Ion exchange technology I. Vol. 10. New York: Springer; 2012. http://dx.doi.org/10.1524/zpch.1957.10.5_6.350.

18 Abrão A. Operações de troca iônica. São Paulo: Instituto de Pesquisas Energéticas e Nucleares - CNEN/SP; 2014.

19 Botelho Junior AB, Espinosa DCR, Dreisinger D, Tenório JAS. Effect of PH to recover Cu(II), Ni(II) and Co(II) from nickel laterite leach using chelating resins. Tecnologia em Metalurgia, Materiais e Mineração. 2019;16:135-140. http://dx.doi.org/10.4322/2176-1523.20191575.

20 Botelho Junior AB. Recuperação de níquel e cobalto a partir de lixiviado de níquel laterítico utilizando resinas quelantes e processo de pré-redução [dissertação]. São Paulo: Universidade de São Paulo; 2019.

21 Botelho Junior AB, Vicente ADA, Espinosa DCR, Tenório JAS. Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Separation Science and Technology. 2019;0:1-11. http://dx.doi.org/10.1080/01496395.2019.1574828.

22 Botelho Junior AB, Dreisinger DB, Espinosa DCR, Tenório JAS. Pre-reducing process kinetics to recover metals from nickel leach waste using chelating resins. International Journal of Chemical Engineering. 2018;2018:1-7. http://dx.doi.org/10.1155/2018/9161323.

23 Aliprandini P. O uso da extração por solventes para tratamento de licor de lixiviação de minério limonítico de níquel [dissertação]. São Paulo: Universidade de São Paulo; 2017.

24 Liu Y, Lee MS. Separation of cobalt and nickel from chloride leach solution of nickel laterite ore by solvent extraction. Geosystem Engineering. 2016;19:214-221. http://dx.doi.org/10.1080/12269328.2016.1164091.

25 Botelho Junior AB, Espinosa DCR, Dreisinger D, Tenório JAS. Recovery of nickel and cobalt from nickel laterite leach solution using chelating resins and pre‐reducing process. The Canadian Journal of Chemical Engineering. 2018;97(5). http://dx.doi.org/10.1002/cjce.23359.

26 CYTEC. CYANEX 272 extractant 2008. [cited 2018 Jan 17]. Available at: http://www.cytec.com/sites/default/files/datasheets/CYANEX 272 Brochure.pdf

27 Rydberg J, Cox M, Musikas C, Choppin GR. Solvent extraction principles and practice. Boca Raton: CRC Press; 2004. http://dx.doi.org/10.1201/9780203021460.

28 Guimarães AS, Silva PS, Mansur MB. Purification of nickel from multicomponent aqueous sulfuric solutions by synergistic solvent extraction using Cyanex 272 and Versatic 10. Hydrometallurgy. 2014;150:173-177. http://dx.doi.org/10.1016/j.hydromet.2014.10.005.

29 Oliveira GFR. Estudo de extração por solvente para separação de cobalto do níquel utilizando Cyanex 272 e Ionquest 290 [trabalho de conclusão de curso]. São Paulo: Universidade de São Paulo; 2017.

30 Santanilla AJM. Estudo dos complexos organometálicos formados na etapa de extração de níquel e cobalto, através do uso de extratantes ácidos [tese]. São Paulo: Universidade de São Paulo; 2017.

31 Gupta CK. Chemical metallurgy: principles and practice. Mumbai: Elsevier; 2003.

5de94df40e8825c235e31d41 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections